Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Rev. biol. trop ; 70(1)dic. 2022.
Article in English | SaludCR, LILACS | ID: biblio-1423028

ABSTRACT

Introduction: Bacillus species are used as biological controllers for phytopathogenic fungi, and the mechanisms to produce controllers include biosynthesis of lipopeptide biosurfactants with antifungal activity. Objective: To evaluate the antifungal potential of the biosurfactants produced by Bacillus strains, selected by molecular screening, on Fusarium oxysporum. Methods: We selected four molecular markers, related to the biosynthesis of surfactin, fengicin, and lichenysin (srfA, spf, fenB, LichAA) in nine Bacillus strains. We used two mineral media with several culture conditions, for biosurfactant production, and a well diffusion test for antifungal potential. Results: Only the biosurfactant produced by UFAB25 inhibits the mycelial growth of F. oxysporum (44 % ± 13): this biosurfactant was positive for srfA, spf, and fenB genes involved in the synthesis of surfactin and fengicine. Antifungal activity depends on culture conditions and the strain. Conclusions: Genetic markers are useful to detect strains with antifungal potential, facilitating the selection of bio-controllers. The biosurfactant profile is influenced by the strain and by culture conditions.


Introducción: Especies de Bacillus han sido empleadas como controladores biológicos contra hongos fitopatógenos. Entre los mecanismos utilizados se destaca la biosíntesis de biosurfactantes lipopeptídicos con actividad antifúngica. Objetivo: Evaluar el potencial antifúngico de los biosurfactantes producidos por cepas Bacillus nativas, previamente seleccionadas mediante tamizaje molecular, sobre Fusarium oxysporum. Métodos: Se utilizaron cuatro marcadores moleculares, relacionados con la biosíntesis de surfactina, fengicina y liquenisina (srfA, spf, fenB, LichAA) sobre nueve cepas de Bacillus. Se utilizaron dos medios minerales con diferentes condiciones de cultivo para la producción del biosurfactante. Se evaluó el potencial antifúngico de los biosurfactantes mediante la prueba de difusión en pozos. Resultados: Se determinó que solo el biosurfactante producido por UFAB25 actúa como inhibidor del crecimiento micelial de Fusarium oxysporum (43.6 % ± 13), esta cepa es positiva para los genes srfA, spf y fenB, involucrados en la síntesis de surfactina y fengicina. La actividad antifúngica depende de las condiciones de cultivo y la cepa. Conclusiones: Los marcadores genéticos ayudan a detectar cepas con potencial antifúngico, facilitando la selección de biocontroladores. El perfil del biosurfactante está influenciado no solo por la cepa, sino también por las condiciones del cultivo.


Subject(s)
Bacillus/chemistry , Antifungal Agents/analysis
2.
Electron. j. biotechnol ; 17(3): 122-125, May 2014. ilus
Article in English | LILACS | ID: lil-719101

ABSTRACT

Background A biosurfactant produced by Pseudomonas aeruginosa cultivated in a low-cost medium formulated with 2.5% vegetable oil refinery residue and 2.5% corn steep liquor and distilled water was employed to stabilize silver nanoparticles in the liquid phase. The particles were initially synthesized using NaBH4 as reducing agent in biosurfactant reverse micelles and were extracted from the micellar solution to disperse in heptane. Results A silver particle size in the range of 1.13 nm was observed. The UV-vis absorption spectra proposed that silver nanoparticles could be formed in the reverse micelles and relatively stabilized for at least 3 months without passivator addition. The Transmission Electron Microscope (TEM) shows that the silver nanoparticles are of spherical form and relatively uniform. Conclusions This process provided a simpler route for nanoparticle synthesis compared to existing systems using whole organisms or partially purified biological extracts, showing that the low-cost biosurfactant can be used for nanoparticle synthesis as a non-toxic and biodegradable stabilizing agent.


Subject(s)
Pseudomonas aeruginosa , Silver/chemistry , Surface-Active Agents/chemistry , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission , Absorption , Excipients
3.
Braz. arch. biol. technol ; 57(1): 138-144, Jan.-Feb. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-702580

ABSTRACT

Two methods were used to make crude preparations of surface-active compounds (SACs) produced by Gordonia amicalis grown on the medium containing 1% diesel oil. Using a 2:1 (v/v) solution of chloroform:methanol for extraction, Type I SACs were isolated and shown to produce oil in water (O/W) emulsions. Type II SACs were isolated by precipitation with ammonium sulfate and produced predominantly water in oil emulsions (W/O). The crude Type I and II preparations were able to produce a significant reduction in the surface tension of water; however, the crude Type II preparation had 10-25 fold higher emulsification activity than the Type I preparation. Both SAC preparations were analyzed by the TLC and each produced two distinct bands with Rf 0.44 and 0.62 and Rf 0.52 and 0.62, respectively. The partially purified SACs were characterized by the ESI(+)-MS, FT-IR and NMR. In each one of these fractions, a mixture of 10 oligomers was found consisting of a series of compounds, with masses from 502 to 899, differing in molecular mass by a repeating unit of 44 Daltons. The mass spectra of these compounds did not appear to match other known biosurfactants and could represent a novel class of these compounds.

SELECTION OF CITATIONS
SEARCH DETAIL